Supporting Information for "Origins of Uncertainty in the Response of the Summer North Pacific Subtropical High to CO_2 Forcing"

Kezhou Lu¹, Jie He¹, and Isla R. Simpson²

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

 $^2\mathrm{National}$ Center for Atmospheric Research, Boulder, CO, USA

Contents of this file

- 1. Figures S1 to S15
- 2. Tables S1 and S2

Introduction: This file contains the following information: 1. a summary of all CMIP models used; 2. comparison of MMM response of Δ NPSH and Δ Pr between Abrupt4 × CO_2 and AMIP 4 × CO_2 +Future; 3. inter-model deviation of Δ NPSH from MMM for individual models; 4. inter-model spread of Δ NPSH in AMIP models; 5. descriptions of SWmodel and CAM5; 6. inter-model PCs of Δ NPSH and Δ SST; 7. intermediate results from tropical Δ SST inter-model spread experiment; 8. inter-model analysis of a subset of CMIP models; 9. Δ SST associated with IPCs of Δ NPSH; 10. inter-model spread of upper-level circulation response from CMIP/AMIP outputs; 11. role of extra-tropical land warming and transient eddies; 12 relationship between inter-model spread of Δ Precip over the

:

North Pacific.

CMIP5							
No.	Model Name	Resolution (atmosphere)	AMIP output available?				
1	ACCESS1-0	$1.875^{\circ}EW \times 1.25^{\circ}NS$, 38 levels	No				
2	ACCESS1-3	$1.875^{\circ}EW \times 1.25^{\circ}NS$, 38 levels	No				
3	bcc-csm1-1	T42, 26 levels	Yes				
4	bcc-csm1-1-m	T106, 26 levels	No				
5	CCSM4	$0.9^{\circ}EW \times 1.25^{\circ}NS$, 30 levels	Yes				
6	CNRM-CM5-2	TL127, 31 levels	No				
7	CNRM-CM5	TL127, 31 levels	Yes				
8	CSIRO-Mk3-6-0	T63, 18 levels	No				
9	GFDL-ESM2M	M45, 24 levels	Yes $(GFDL-CM4)$				
10	GISS-E2-H	$2.5^{\circ}EW \times 2^{\circ}NS$, 40 levels	No				
11	GISS-E2-R	$2.5^{\circ}EW \times 2^{\circ}NS$, 40 levels	No				
12	HadGEM2-ES	N96, 38 levels	Yes (HadGEM2-A)				
13	inmcm4	$2^{\circ}EW \times 1.5^{\circ}NS$, 21 levels	No				
14	IPSL-CM5A-LR	$3.85^{\circ}EW \times 1.875^{\circ}NS$, 39 levels	Yes				
15	IPSL-CM5A-MR	$2.5^{\circ}EW \times 1.25^{\circ}NS$, 39 levels	No				
16	IPSL-CM5B-LR	$3.85^{\circ}EW \times 1.875^{\circ}NS$, 39 levels	Yes				
17	MIROC5	T85, 40 levels	No				
18	MIROC-ESM	T85, 40 levels	No				
19	MPI-ESM-LR	T63, 47 levels	Yes				
20	MPI-ESM-MR	T63, 95 levels	Yes				
21	MPI-ESM-P	T63, 47 levels	No				
22	MRI-CGCM3	TL159, 48 levels	Yes				
23	NorESM1-M	f19, 26 levels	No				
24	NorESM1-ME	TL159, 48 levels	No				
		CMIP6					
No.	Model Name	Resolution (atmosphere)	AMIP output available?				
25	ACCESS-CM2	N96, 85 levels	No				
26	ACCESS-ESM1-5	N96, 85 levels	No				
27	AWI-CM-1-1-MR	T127, 95 levels	No				
28	BCC-ESM1	T42, 26 levels	Yes $(BCC-CSM2-MR)$				
29	CAMS-CSM1-0	T106, 31 levels	No				
30	CanESM5	T63, 49 levels	Yes				
31	CESM2	$1.25^{\circ}EW \times 0.9^{\circ}NS$, 32 levels	Yes				
32	CESM2-FV2	$2.5^{\circ}EW \times 1.9^{\circ}NS$, 32 levels	No				
33	CESM2-WACCM	$1.25^{\circ}EW \times 0.9^{\circ}NS$, 70 levels	No				
34	EC-Earth3-AerChem	TL255, 91 levels	No				
35	EC-Earth3-Veg	TL255, 91 levels	No				
36	FGOALS-f3-L	c96, 32 levels	No				
37	GISS-E2-1-G	$2.5^{\circ}EW \times 2^{\circ}NS$, 40 levels	No				
38	GISS-E2-1-H	$2.5^{\circ}EW \times 2^{\circ}NS, 40$ levels	No				
39	GISS-E2-2-G	$2.5^{\circ}EW \times 2^{\circ}NS, 40$ levels	No				

Table S1: Summary of CMIP5 and CMIP6 models

40	IITM-ESM	T62, 64 levels	No
41	KACE-1-0-G	N96, 85 levels	No
42	MIROC6	T85, 81 levels	Yes
43	MRI-ESM2-0	TL195, 80 levels	Yes
44	NorCPM1	$2.5^{\circ}EW \times 1.9^{\circ}NS$, 26 levels	No
45	NorESM2-MM	$1^{\circ}EW \times 1^{\circ}NS$, 32 levels	No
46	TaiESM1	$1.25^{\circ}EW \times 0.9^{\circ}NS$, 30 levels	No

X - 4

Abrupt $4 \times CO_2$ and AMIP $4 \times CO_2$ +Future.

Figure S1. MMM response of 300-hPa eddy streamfunction (upper channel) and NPSH (lower channel) from 46 Abrupt $4xCO_2$ models (**a**, **c**) and 15 AMIP $4xCO_2$ +Future scenarios (**b**, **d**). NPSH is represented by 850-hPa eddy streamfunction.

Figure S2. Similar to Figure S1 but for tropical precipitation.

Figure S3 and S4. Deviation from the multi-model mean of Δ NPSH equilibrium response for each individual model.

Figure S3. Deviation (shadings; m^2/s) from the multi-model mean (contours; $10^5 m^2/s$) of $\Delta \Psi_{850}$ equilibrium response for each individual model in CMIP5 and CMIP6 abrupt4× CO_2 simulation.

Figure S3. continued.

Figure S4. Same as Figure S3 but for $AMIP4 \times CO_2 + Future simulation$.

Figure S5. Inter-model spread of \triangle NPSH among AMIP models.

Figure S5. Inter-model standard deviation of Δ NPSH calculated from 15 Abrupt4 × CO_2 models with AMIP outputs (a) and 15 models under AMIP4 × CO_2 +Future (b).These models are highlighted in red in Table S1.

Table S	2: Mo	del des	scriptions
---------	-------	---------	------------

	SWmodel	$\mathbf{CAM5}$	
Horizontal	Rhomboidal wavenumber-30	FV 1-degree grid for both land	
resolution	truncation	and atmosphere	
Vertical resolution	14 sigma levels	30 hybrid levels	
Anomaly model	Yes	No	
Damping	Rayleigh friction and Newtonian	Do not apply	
coefficients	cooling is 15 days at all levels,		
	and the biharmonic diffusion		
	coefficient is $1 \times 10^{17} m^4 s^{-1}$		
Moist processes	Prescribed separately as an	Included	
	independent diabatic heating		
Transient eddies	Prescribed separately as an	Included	
	independent transient		
	momentum forcing		
Topography	Prescribed separately if using	Included	
	zonal-mean basic state, otherwise	se	
	embeded in the 3D basic state		
SST and sea ice Do not apply		Prescribed	
Interaction with	Do not apply	Included	
land			

Figure S6. IPC1 of \triangle NPSH and IPC1 of \triangle SST in Abrupt $4 \times CO_2$ models.

:

Figure S6. IPC1 of Δ NPSH (blue bars) and IPC1 of tropical Δ SST (red lines) from 46 fully coupled abrupt4× CO_2 models. The numbers (Mx) on the horizontal axis correspond to different models listed in Table S1. The correlation coefficient between IPC1 of Δ NPSH and IPC1 of Δ SST is 0.52. The orange line denotes the one standard deviation of the Δ NPSH PC1, and models that surpass this value are chosen to perform the composite analysis.

from CAM5

Figure S7. Response of total diabatic heating (Q) and low-level circulation to prescribed $\delta\Delta$ SST in CAM5. **a** Vertically averaged response of Q (shadings). **b** Response of NPSH (shadings) and subtropical precipitation (contours; mm/day).

X - 12

Figure S8: Inter-model spread of \triangle NPSH captured by 15 CMIP models with

:

AMIP outputs.

Figure S8. a and b Same as Figure 1c and 1d but produced by a subset of 15 CMIP models with AMIP outputs. These models are: bcc-csm1-1, CCSM4, CNRM-CM5, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5B-LR, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, BCC-ESM1, CanESM5, CESM2, MIROC6, and MRI-ESM2-0

Figure S9: Inter-model spread of ΔSST associated with IPC2 of $\Delta NPSH$ under

Abrupt $4 \times CO_2$.

Figure S9. Regression of tropical Δ SST) onto the first (**a**) and second (**b**) inter-model principal components (IPCs) of Δ NPSH based on 46 Abrupt4 × CO_2 models. Regions with statistically significant correlation are hatched.

X - 14

Figure S10: Inter-model spread of $\Delta \Psi_{300}$ from both Abrupt4 × CO_2 and AMIP4 × CO_2 +Future scenario.

Figure S10. Similar to Figure 1 but for changes in 300-hPa eddy streamfunction regressed onto IPCs of Δ NPSH under Abrupt4× CO_2 (**b**,**c**) or under AMIP4× CO_2 +Future (**d**).

Figure S11 and S12: Role of extratropical land warming and transient eddies

in SWmodel

Figure S11. Response of air temperature at the lowest hybrid-sigma (or sigma) level to non- $\delta\Delta$ SST induced tropical diabatic heating spread in CAM5 (a) and SWmodel (b).

Figure S12. Role of convergence of transient eddy flux $(-\nabla \cdot \overline{\mathbf{v}'\xi'})$. The transient eddy flux can be calculated as: $-\nabla \cdot \overline{\mathbf{v}'\xi'} = -\frac{\partial^2 \overline{u'v'}}{\partial x^2} + \frac{\partial^2 \overline{u'2}}{\partial x \partial y} - \frac{\partial^2 \overline{v'2}}{\partial y^2}$, where u', v' are daily zonal and meridional wind response to $\delta\Delta$ SST induced $\delta\Delta$ Q from CAM5. The transient vorticity forcing at 300 hPa and 850 hPa are shown in a and b. The response of 300-hPa eddy streamfunction and NPSH to this transient eddy momentum forcing simulated by SWmodel are shown in c and d. The effect of transient eddy flux could amplify the lowlevel anticyclone response around the NP and the barotropic structure North of $40^{\circ}N$.

Figure S13 and S14: Inter-model spread of Δ TS over extra-tropical Eurasia and its relationship with Δ NPSH.

Figure S13. Correlation between the IPC1 of land Δ TS over extratropical Eurasia (20-60°N and 60-140°E) and Δ NPSH inter-model index averaged over NP (**a**), NCP (**b**), WP (**c**) and EPG (**d**). The Δ NPSH inter-model index is normalized by $1.25 \times 10^6 m^2/s$. The Pearson correlation coefficient r and the corresponding p-value are noted on each subplot. The inter-model correlation is considered significant when p < 0.05.

Figure S14. Regression map of ΔTS onto $\delta \Delta NPSH$ index averaged over NP (a), NCP (b), IWP (c) and EPG (d). Only regions with significant correlations are plotted.

Figure S15: Inter-model spread of Δ Precip over North Pacific.

Figure S15. a Similar to Figure 2b but calculated over extra-tropical region. b The precipitation response to North Pacific inter-model Δ SST spread in CAM5.