What Drives Projections of Subtropical Precipitation Decline?

Jie He

AOS Program Princeton University

Brian Soden

Rosenstiel School for Marine and Atmospheric Science University of Miami

Precipitation declines in the subtropics.

Model evidence (1pctCO2)

Results

• Observation (Neelin et al. 2006, PNAS)

Dry getting drier?

Introduction

"If these models are correct, the levels of aridity of the recent multi-year drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades."

-- Seager et al. 2007, Science

Dry getting drier?

California Drought (2011-)

U.S. Drought Monitor California

October 6, 2015 (Released Thursday, Oct. 8, 2015) Valid 8 a.m. EDT

	Drought Conditions (Percent Area)					
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	0.14	99.86	97.33	92.36	71.08	46.00
Last Week 9/29/2015	0.14	99.86	97.33	92.36	71.08	46.00
3 Months Ago 7/7/2015	0.14	99.86	98.71	94.59	71.08	46.73
Start of Calendar Year 12/30/2014	0.00	100.00	98.12	94.34	77.94	32.21
Start of Water Year 929/2015	0.14	99.86	97.33	92.36	71.08	46.00
One Year Ago 107/2014	0.00	100.00	100.00	95.04	81.92	58.41

Intensity:

D2 Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author: David Miskus NOAA/NWS/NCEP/CPC

• Australia Drought (1997-2009)

Results

Introduction

Method

Dry getting drier?

Why not land?

Results

What drives the decline?

2 prominent mechanisms:

- "Dry-get-drier"
- Poleward expansion

• "Dry-get-drier" (Held and Soden 2006, J. Climate)

$$P - E = -\int \nabla \cdot (q \cdot V)$$

$$\delta(P-E) = -\int \nabla \cdot (\delta q \cdot V) - \int \nabla \cdot (q \cdot \delta V) - \int \nabla \cdot (\delta q \cdot \delta V) \\ \downarrow \qquad \delta V \approx 0 \\ \delta(P-E) = -\int \nabla \cdot (\delta q \cdot V) \\ \downarrow \qquad \delta q \approx q \times 7\% / K \\ \delta(P-E) = -\int \nabla \cdot (q \cdot V) \times 7\% / K = (P-E) \times 7\% / K$$

• "Dry-get-drier" (Held and Soden 2006, J. Climate) $\delta(P-E) = (P-E) \times 7\% / K$

Climatological (P-E)x7%/K

Change in P-E

 $\rightarrow \delta P \propto (P-E)$

Results

"Since the changes in precipitation have considerably more structure than the changes in evaporation, this simple picture helps us understand the zonally averaged pattern of precipitation change."

• "Dry-get-drier" (Held and Soden 2006, J. Climate)

Subtropical precipitation decline Increased moisture export Increase in moisture Global mean warming (a thermodynamic response)

Resu

• Poleward expansion (Scheff and Frierson 2012, J. Climate, GRL)

 $\delta P \propto (P-E)$??

Introduction

Most of the decline happens poleward of P-E minima.

• Poleward expansion (Scheff and Frierson 2012, J. Climate, GRL)

Change in zonal mean stream function

(He and Soden 2015, J. Climate)

Results

Which one is right?

"Dry-get-drier"

Poleward expansion ——> Mean SST warming

(Compo & Sardeshmukh 2009, C Dyn; Grise & Polvani 2014, GRL; He & Soden 2015, J Climate)

Abrupt4xCO2 (13 CGCMs, CMIP5)

Direct CO₂ forcing Land-sea warming contrast → Fast (1st year) Pattern of SST change Mean SST warming → Slow

Fast precipitation response in the deep tropics: Bony et al. 2013 *Nature Geo*; Chadwick et al. 2014 *GRL*

Method

Results

Fast VS Slow responses

Introduction

Methoo

Fast VS Slow responses

• Neither "Dry-get-drier" nor poleward expansion is required for the subtropical precipitation decline.

Results

• Neither of the two mechanisms contributes substantially to the subtropical precipitation decline.

A more realistic scenario...

Total Change (1pctCO2)

CO₂ VS mean VS pattern

CMIP5 9-model mean AMIP_pattern = AMIP_future - AMIP_mean

Precip Change (mm/day/K)

Subtropical precipitation decline does not depend on the global mean SST warming.

Introduction

Method

CO₂ VS mean VS pattern

$CO_2 \text{ VS mean VS pattern}$ $\delta(P-E) = -\int \nabla \cdot (\delta q \cdot V) - \int \nabla \cdot (q \cdot \delta V) - \int \nabla \cdot (\delta q \cdot \delta V)$

 $\delta P = -\int \nabla \cdot (\delta q \cdot V) - \int \nabla \cdot (q \cdot \delta V) - \int \nabla \cdot (\delta q \cdot \delta V) + \delta E + R \quad \text{(Seager et al. 2010, J. Climate)}$

Direct CO₂ forcing (Bony et al. 2013, Nature Geo)

Land-sea warming contrast (Chadwick et al. 2014, GRL; He & Soden 2015, J. Climate)

Direct CO₂ VS Land-sea contrast

Land-sea contrast drives dynamic change.

Introduction

• Direct CO₂ forcing reduces evaporation (He and Soden 2015, J. Climate).

Land-sea warming contrast

Introduction

 Land-sea warming contrast drives precipitation decline over ocean but counteracts the precipitation decline over land, which would otherwise happen due to SST change.

Summary

- *Conventional wisdom: "dry-get-drier" and poleward expansion.
- * Subtropical precipitation decline is primarily a fast response and does not depend on changes in moisture or poleward expansion of the Hadley cell.
- * The large-scale subtropical precipitation decline is driven by the land-sea warming contrast, direct CO_2 forcing and, in certain regions, pattern of SST change.
- * The land-sea warming contrast drives precipitation decline over subtropical ocean but counteracts the precipitation decline over land.

References

Bony, S. *et al.* Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. *Nat. Geosci* 6, 447-451 (2013).

Chadwick, R., Good, P., Andrews, T. and Martin, G. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. *Geophys. Res. Lett.* **41**, 610-615 (2014).

Grise, K. M. and Polvani, L. M. The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing.

He, J., and B. J. Soden, 2015: Anthropogenic Weakening of the Tropical Circulation: The Relative Roles of Direct CO2 Forcing and Sea Surface Temperature Change. J. Clim., 28, 8728-8742, doi:10.1175/JCLI-D-15-0205.1.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Clim., 19, 5686-5699, doi:10.1175/JCLI3990.1.

Neelin, J. D., M. Münnich, H. Su, J. E. Meyerson, and C. E. Holloway, 2006: Tropical drying trends in global warming models and observations. *Proc. Natl. Acad. Sci.*, **103**, 6110-6115, doi:10.1073/pnas.0601798103. Scheff, J., and D. Frierson, 2012: Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. *J. Clim.*, **25**, 4330-4347, doi:10.1175/JCLI-D-11-00393.1.

Seager, R. *et al*. Model projections of an imminent transition to a more arid climate in southwestern North America. *Science* **316**, 1181-1184 (2007).

Seager, R., Naik, N. and Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. *J. Clim.* 23, 4651-4668 (2010).

Thank you ©